Solve the following systems of equations:
$\frac{22}{x+y}+\frac{15}{x-y}=5$
$\frac{55}{x+y}+\frac{45}{x-y}=14$
The given equations are:
$\frac{22}{x+y}+\frac{15}{x-y}=5$
$\frac{55}{x+y}+\frac{45}{x-y}=14$
Let $\frac{1}{x+y}=u$ and $\frac{1}{x-y}=v$ then equations are
$22 u+15 v=5 \ldots(i)$
$55 u+45 v=14 \ldots(i i)$
Multiply equation $(i)$ by 3 and subtracting (ii) from (i), we get
$\Rightarrow u=\frac{1}{11}$
Put the value of $u$ in equation $(i)$, we get
$22 \times-\frac{1}{11}+15 v=5$
$\Rightarrow 15 v=3$
$\Rightarrow v=\frac{1}{5}$
Then
$\frac{1}{x+y}=\frac{1}{11}$
$\Rightarrow x+y=11$
$\frac{1}{x-y}=\frac{1}{5}$
$\Rightarrow x-y=5$
Add both equations, we get
$x+y=11$
Put the value of in second equation, we get
$8-y=5$
$\Rightarrow-y=-3$
$\Rightarrow y=3$
Hence the value of $x=8$ and $y=3$.