Question:
Solve the following systems of equations:
$\frac{5}{x+1}-\frac{2}{y-1}=\frac{1}{2}$
$\frac{10}{x+1}+\frac{2}{y-1}=\frac{5}{2}$
where $x \neq-1$ and $y \neq 1$
Solution:
The given equations are:
$\frac{5}{x+1}-\frac{2}{y-1}=\frac{1}{2}$
$\frac{10}{x+1}+\frac{2}{y-1}=\frac{5}{2}$
Let $\frac{1}{x+1}=u$ and $\frac{1}{y-1}=v$ then equations are
$5 u-2 v=\frac{1}{2} \ldots(i)$
$10 u+2 v=\frac{5}{2} \ldots(i i)$
Add both equations, we get
$5 u-2 v=\frac{1}{2}$
Put the value of $u$ in equation $(i)$, we get
$5 \times \frac{1}{5}-2 v=\frac{1}{2}$
$\Rightarrow-2 v=-\frac{1}{2}$
$\Rightarrow v=\frac{1}{4}$
Then
$\frac{1}{x+1}=\frac{1}{5}$
$\Rightarrow x+1=5$
$\Rightarrow x=4$
$\frac{1}{y-1}=\frac{1}{4}$
$\Rightarrow y-1=4$
$\Rightarrow y=5$
Hence the value of $x=4$ and $y=5$.