Question:
Solve the following systems of equations:
$\frac{2}{x}+\frac{3}{y}=\frac{9}{x y}$
$\frac{4}{x}+\frac{9}{y}=\frac{21}{x y}, x \neq 0, y \neq 0$
Solution:
The given equations are:
$\frac{2}{x}+\frac{3}{y}=\frac{9}{x y} \quad \ldots(i)$
$\frac{4}{x}+\frac{9}{y}=\frac{21}{x y} \ldots($ ii $)$
Multiply equation (i) by 3 and subtract (ii) from (i), we get
$\frac{6}{x}+\frac{9}{y}=\frac{27}{x y}$
Put the value of $x$ in equation $(i)$, we get
$\Rightarrow \frac{2}{x}+\frac{3}{3}=\frac{9}{3 x}$
$\Rightarrow \frac{1}{x}=1$
$\Rightarrow x=1$
Hence the value of $x=1$ and $y=3$