Solve the following systems of equations:
$\frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4}$
$\frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=-\frac{1}{8}$
The given equations are:
$\frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4}$
$\frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=-\frac{1}{8}$
Let $\frac{1}{3 x+y}=u$ and $\frac{1}{3 x-y}=v$ then equations are
$u+v=\frac{3}{4} \ldots(i)$
$\frac{u}{2}-\frac{v}{2}=\frac{1}{8} \ldots$- (ii)
Multiply equation (ii) by 2 and add both equations, we get
$u+v=\frac{3}{4}$
Put the value of $u$ in equation $(i)$, we get
$1 \times \frac{1}{4}+v=\frac{3}{4}$
$\Rightarrow v=\frac{1}{2}$
Then
$\frac{1}{3 x+y}=\frac{1}{4}$$\ldots($ iii $)$
$\Rightarrow 3 x+y=4$
$\frac{1}{3 x-y}=\frac{1}{2}$$\therefore(i v)$
$\Rightarrow 3 x-y=2$
Add both equations, we get
Put the value of $x$ in equation (iii) we get
$3 \times 1+y=4$
$\Rightarrow y=1$
Hence the value of $x=1$ and $y=1$