Solve the following systems of equations:
$\frac{2}{3 x+2 y}+\frac{3}{3 x-2 y}=\frac{17}{5}$
$\frac{5}{3 x+2 y}+\frac{1}{3 x-2 y}=2$
The given equations are:
$\frac{2}{3 x+2 y}+\frac{3}{3 x-2 y}=\frac{17}{5}$
$\frac{5}{3 x+2 y}+\frac{1}{3 x-2 y}=2$
Let $\frac{1}{3 x+2 y}=u$ and $\frac{1}{3 x-2 y}=v$ then equations are
$2 u+3 v=\frac{17}{5}$ $\ldots(i)$
$5 u+v=2 \ldots(i i)$
Multiply equation (ii) by 3 and subtract (ii) from (i), we get
$2 u+3 v=\frac{17}{5}$
Put the value of $u$ in equation $(i)$, we get
$2 \times \frac{1}{5}+3 v=\frac{17}{5}$
$\Rightarrow 3 v=3$
$\Rightarrow v=1$
Then
$\frac{1}{3 x+2 y}=\frac{1}{5}$$\ldots(i i i)$
$\Rightarrow 3 x+2 y=5$
$\frac{1}{3 x-2 y}=1$$\ldots(i v)$
$\Rightarrow 3 x-2 y=1$
Add both equations, we get
Put the value of $x$ in equation (iii) we get
$3 \times 1+2 y=5$
$\Rightarrow 2 y=2$
$\Rightarrow y=1$
Hence the value of $x=1$ and $y=1$.