Question:
Solve the following systems of equations:
$\frac{3}{x}-\frac{1}{y}=-9$
$\frac{2}{x}+\frac{3}{y}=5$
Solution:
The given equations are:
$\frac{3}{x}-\frac{1}{y}=-9$ $\ldots(i)$
$\frac{2}{x}+\frac{3}{y}=5 \ldots(i i)$
Multiply equation $(i)$ by 3 and add both equations, we get
$\frac{9}{x}-\frac{3}{y}=-27$
Put the value of $x$ in equation $(i)$, we get
$\frac{3}{\frac{-1}{2}}-\frac{1}{y}=-9$
$\Rightarrow \frac{-1}{y}=-3$
$\Rightarrow y=\frac{1}{3}$
Hence the value of $x=-\frac{1}{2}$ and $y=\frac{1}{3}$