Solve the following systems of equations:
$3 x-\frac{y+7}{11}+2=10$
$2 y+\frac{x+11}{7}=10$
The given equations are:
$3 x-\frac{y+7}{11}+2=10$
$\Rightarrow 3 x-\frac{(y+7)}{11}=8$
$\Rightarrow \frac{33 x-y-7}{11}=8$
$\Rightarrow 33 x-y-7=88$
$\Rightarrow 33 x-y-7=88$
$\Rightarrow 33 x-y=95 \quad \ldots \ldots \ldots(1)$
$2 y+\frac{x+11}{7}=10$
$\Rightarrow \frac{14 y+x+11}{7}=10$
$\Rightarrow 14 y+x+11=70$
$\Rightarrow 14 y+x=59$
$\Rightarrow x+14 y=59 \quad \ldots \ldots \ldots(2)$
Multiply equation (1) by 14 , we get
$462 x-14 y=1330 \quad \ldots \ldots(3)$
adding $(2)$ and $(3)$, we get
$(x+14 y)+(462 x-14 y)=59+1330$
$\Rightarrow 463 x=1389$
$\Rightarrow x=3$
Substituting the value of $x$ in $(2)$, we get
$3+14 y=59$
$\Rightarrow 14 y=59-3$
$\Rightarrow 14 y=56$
$\Rightarrow y=4$
Hence the value of $x$ and $y$ are $x=3$ and $y=4$