Question:
Solve the following systems of equations:
$\frac{x}{3}+\frac{y}{4}=11$
$\frac{5 x}{6}-\frac{y}{3}=-7$
Solution:
The given equations are:
$\frac{x}{3}+\frac{y}{4}=11 \ldots$$(i)$
$\frac{5 x}{6}-\frac{y}{3}=-7$...$(i i)$
Multiply equation $(i)$ by $\frac{1}{3}$ and equation $(i i)$ by $\frac{1}{4}$ and add both equations we get
$\frac{x}{9}+\frac{y}{12}=\frac{11}{3}$
Put the value of $x$ in equation $(i)$ we get
$\frac{6}{3}+\frac{y}{4}=11$
$\Rightarrow \frac{y}{4}=9$
$\Rightarrow y=36$
Hence the value of $x=6$ and $y=36$.