Solve the following systems of equations:
$\frac{6}{x+y}=\frac{7}{x-y}+3$
$\frac{1}{2(x+y)}=\frac{1}{3(x-y)^{\dagger}}$
where $x+y \neq 0$ and $x-y \neq 0$
The given equations are:
$\frac{6}{x+y}=\frac{7}{x-y}+3$
$\frac{1}{2(x+y)}=\frac{1}{3(x-y)}$
Let $\frac{1}{x+y}=u$ and $\frac{1}{x-y}=v$ then equations are
$6 u=7 v+3 \ldots(i)$
$\frac{u}{2}=\frac{v}{3}$ ...(ii)
Multiply equation (ii) by 12 and subtract (ii) from (i), we get
Put the value of $v$ in equation $(i)$, we get
$\Rightarrow 6 u=7 \times-1+3$
$\Rightarrow 6 u=-4$
$\Rightarrow u=-\frac{2}{3}$
Then
$\frac{1}{x+y}=-\frac{2}{3}$
$\Rightarrow x+y=-\frac{3}{2}$
$\frac{1}{x-y}=-1$
$\Rightarrow x-y=-1$
Add both equations, we get
$x+y=-\frac{3}{2}$
Put the value of in second equation, we get
$6 \times 2+6 y=5 \times 2 y$
$\Rightarrow 12=4 y$
$\Rightarrow y=3$
Hence the value of $x=-\frac{5}{4}$ and $y=-\frac{1}{4}$.