Solve the following systems of equations:
$x-y+z=4$
$x-2 y-2 z=9$
$2 x+y+3 z=1$
The given equations are:
$x-y+z=4 \ldots(i)$
$x-2 y-2 z=9 \ldots(i i)$
$2 x+y+3 z=1 \ldots(i i i)$
First of all we find the value of $x$
$x=4+y-z$
Put the value of $x$ in equation $(i i)$, we get
$4+y-z-2 y-2 z=9$
$\Rightarrow-3 z-y=5 \ldots(i v)$
Put the value of $x$ and $y$ in equation in $($ iii $)$ we get
$2(4+y-z)+y+3 z=1$
$\Rightarrow 8+2 y-2 z+y+3 z=1$
$\Rightarrow 3 y+z=-7 \quad \ldots(v)$
Multiply equation $(i v)$ by 3 and add equations $(i v)$ and $(v)$, we get
Put the value of $z$ in equation $(v)$, we get
$3 y-1=-7$
$\Rightarrow 3 y=-6$
$\Rightarrow y=-2$
Put the value of $y$ and $z$ in equation $(i)$ we get
$x-(-2)-1=4$
$\Rightarrow x=3$
Hence the value of $x=3$, $y=-2$ and $z=-1$.