Question:
Solve the following systems of equations:
$x+\frac{y}{2}=4$
$\frac{x}{3}+2 y=5$
Solution:
The given equations are:
$x+\frac{y}{2}=4 \ldots$$\ldots(i)$
$\frac{x}{3}+2 y=5$$. .($ ii $)$
Multiply equation $(i)$ by 4 and subtract equations $(i)-(i i)$, we get
$4 x+2 y=16$
Put the value of $x$ in equation $(i)$, we get
$3+\frac{y}{2}=4$
$\Rightarrow \frac{y}{2}=1$
$\Rightarrow y=2$
Hence the value of $x$ and $y$ are $x=3$ and $y=2$