Question:
Solve the following systems of equations:
$\frac{1}{2 x}+\frac{1}{3 y}=2$
$\frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6}$
Solution:
The given equations are:
$\frac{1}{2 x}+\frac{1}{3 y}=2...(i)
$\frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6}$..$(i i)$
Multiply equation $(i)$ by $\frac{1}{2}$ and $(i i)$ by $\frac{1}{3}$ and subtract equation (ii) from (i) we get
$\frac{1}{4 x}+\frac{1}{6 y}=1$
Put the value of $x$ in equation $(i)$, we get
$\frac{1}{2 \times \frac{1}{2}}+\frac{1}{3 y}=2$
$\frac{1}{3 y}=2-1$
$\frac{1}{3 y}=1$
$y=\frac{1}{3}$
Hence the value of $x=\frac{1}{2}$ and $y=\frac{1}{3}$