Solve the following system of equations graphically:
Shade the region between the lines and the y-axis
(i) $3 x-4 y=7$
$5 x+2 y=3$
(ii) $4 x-y=4$
$3 x+2 y=14$
The given equations are:
$3 x-4 y=7$$. .(i)$
$5 x+2 y=3$$. .(i i)$
Putting $x=0$ in equation (i) we get:
$\Rightarrow 3 \times 0-4 y=7$
$\Rightarrow y=-7 / 4$
$x=0, \quad y=-7 / 4$
Putting $y=0$ in equation (i) we get:
$\Rightarrow 3 x-4 \times 0=7$
$\Rightarrow x=7 / 3$
$x=7 / 3, \quad y=0$
Use the following table to draw the graph.
Draw the graph by plotting the two points $A(0,-7 / 4), B(7 / 3,0)$ from table.
$5 x+2 y=3$.(ii)
Putting $x=0$ in equation (ii) we get:
$\Rightarrow 5 \times 0+2 y=3$
$\Rightarrow y=2 / 3$
$x=0, \quad y=3 / 2$
Putting $y=0$ in equation (ii) we get:
$\Rightarrow 5 x+2 \times 0=3$
$\Rightarrow x=3 / 5$
$x=3 / 5, \quad y=0$
Use the following table to draw the graph.
Draw the graph by plotting the two points $C(0,3 / 2)$ and $D(3 / 5,0)$ from table.
The two lines intersect at points $P(1,-1)$ of $y$-axis.
Hence, $x=1$ and $y=-1$ is the Solution.
(ii) The equations are:
$4 x-y=4$(1)
$3 x+2 y=14$$(2)$
Putting $x=0$ in equation (1) we get:
$\Rightarrow 4 \times 0-y=4$
$\Rightarrow y=-4$
$x=0, \quad y=-4$
Putting $y=0$ in equation (1) we get:
$\Rightarrow 4 x-0=4$
$\Rightarrow x=1$
$x=1, \quad y=0$
Use the following table to draw the graph:
Draw the graph by plotting the two points $A(0,-4)$ and $B(1,0)$ from table.
$3 x+2 y=14$...(2)
Putting $x=0$ in equation (2) we get:
$\Rightarrow 3 \times 0+2 y=14$
$\Rightarrow y=7$
$x=0, \quad y=7$
Putting $y=0$ in equation (2) we get:
$\Rightarrow 3 x+2 \times 0=14$
$\Rightarrow x=14 / 3$
$x=14 / 3, \quad y=0$
Use the following table to draw the graph.
Draw the graph by plotting the two points $C(0,7), D(14 / 3,0)$ from table.
Two lines intersect at points $P(2,4)$ of $y$-axis.
Hence $x=2$ and $y=4$ is the solution.