If $I_{m, n}=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$, for $m, n \geq 1$ and $\int_{0}^{1} \frac{x^{m-1}+x^{n-1}}{(1+x)^{m+n}} d x=\alpha I_{m, n}, \alpha \in R$, then $\alpha$ equals
$\mathrm{I}_{\mathrm{m}, \mathrm{n}}=\int_{0}^{1} \mathrm{x}^{\mathrm{m}-1}(1-\mathrm{x})^{\mathrm{n}-1} \mathrm{dx}=\mathrm{I}_{\mathrm{n}, \mathrm{m}}$
Now Let $x=\frac{1}{y+1} \Rightarrow d x=-\frac{1}{(y+1)^{2}} d y$
$\mathrm{SO}$
$\mathrm{I}_{\mathrm{m}, \mathrm{n}}=-\int_{\infty}^{0} \frac{1}{(\mathrm{y}+1)^{\mathrm{m}-1}} \frac{\mathrm{y}^{\mathrm{n}-1}}{(\mathrm{y}+1)^{\mathrm{n}-1}} \frac{\mathrm{dy}}{(\mathrm{y}+1)^{2}}=\int_{0}^{\infty} \frac{\mathrm{y}^{\mathrm{n}-1}}{(1+\mathrm{y})^{\mathrm{m}+\mathrm{n}}} \mathrm{dy}$
similarly $\mathrm{I}_{\mathrm{m}, \mathrm{n}}=\int_{0}^{\infty} \frac{\mathrm{y}^{\mathrm{m}-1}}{(1+\mathrm{y})^{\mathrm{m}+\mathrm{n}}} \mathrm{dy}$
Now $2 \mathrm{I}_{\mathrm{m}, \mathrm{n}}=\int_{0}^{\infty} \frac{\mathrm{y}^{\mathrm{m}-1}+\mathrm{y}^{\mathrm{n}-1}}{(1+\mathrm{y})^{\mathrm{m}+\mathrm{n}}} \mathrm{dy}$
$=\int_{0}^{\infty} \frac{\mathrm{y}^{\mathrm{m}-1}+\mathrm{y}^{\mathrm{n}-1}}{(1+\mathrm{y})^{\mathrm{m}+\mathrm{n}}} \mathrm{dy}$
$=\int_{0}^{1} \frac{y^{m-1}+y^{n-1}}{(1+y)^{m+n}} d y+\underbrace{\int_{1}^{\infty} \frac{y^{m-1}+y^{n-1}}{(1+y)^{m+n}} d y}_{\text {substitute } y=\frac{1}{t}}$
$\Rightarrow 2 \mathrm{I}_{\mathrm{m}, \mathrm{n}}=\int_{0}^{1} \frac{\mathrm{y}^{\mathrm{m}-1}+\mathrm{y}^{\mathrm{n}-1}}{(1+\mathrm{y})^{\mathrm{m}+\mathrm{n}}} \mathrm{dy}-\int_{1}^{0} \frac{\mathrm{t}^{\mathrm{n}-1}+\mathrm{t}^{\mathrm{m}-1}}{\mathrm{t}^{\mathrm{m}+\mathrm{n}-2}} \frac{\mathrm{t}^{\mathrm{m}+\mathrm{n}}}{(1+\mathrm{t})^{\mathrm{m}+\mathrm{n}}} \frac{\mathrm{dt}}{\mathrm{t}^{2}}$
$\Rightarrow$ Hence $2 \mathrm{I}_{\mathrm{m}, \mathrm{n}}=2 \int_{0}^{1} \frac{\mathrm{y}^{\mathrm{m}-1}+\mathrm{y}^{\mathrm{n}-1}}{(1+\mathrm{y})^{\mathrm{m}+\mathrm{n}}} \mathrm{dy} \Rightarrow \alpha=1$