Solve the Following Questions

Question:

If $y(x)=\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right), x \in\left(\frac{\pi}{2}, \pi\right)$, then $\frac{\mathrm{dy}}{\mathrm{dx}}$ at $\mathrm{x}=\frac{5 \pi}{6}$ is:

  1. $-\frac{1}{2}$

  2. $-1$

  3. $\frac{1}{2}$

  4. 0


Correct Option: 1

Solution:

$y(x)=\cot ^{-1}\left[\frac{\cos \frac{x}{2}+\sin \frac{x}{2}+\sin \frac{x}{2}-\cos \frac{x}{2}}{\cos \frac{x}{2}+\sin \frac{x}{2}-\sin \frac{x}{2}+\cos \frac{x}{2}}\right]$

$y(x)=\cot ^{-1}\left(\tan \frac{x}{2}\right)=\frac{\pi}{2}-\frac{x}{2}$

$y^{\prime}(x)=\frac{-1}{2}$

Leave a comment