Solve the Following Questions

Question:

If $\left.\cot ^{-1} ( \alpha\right)=\cot ^{-1} 2+\cot ^{-1} 8+\cot ^{-1} 18$

$+\cot ^{-1} 32+\ldots .$ upto 100 terms, then $\alpha$ is :

  1. 1.01

  2. 1.00

  3. 1.02

  4. 1.03


Correct Option: 1

Solution:

$\operatorname{Cot}^{-1}(\alpha)=\cot ^{-1}(2)+\cot ^{-1}(8)+\cot ^{-1}(18)+\ldots . .$

$=\sum_{\mathrm{n}=1}^{100} \tan ^{-1}\left(\frac{2}{4 \mathrm{n}^{2}}\right)$

$=\sum_{\mathrm{n}=1}^{100} \tan ^{-1}\left(\frac{(2 \mathrm{n}+1)-(2 \mathrm{n}-1)}{1+(2 \mathrm{n}+1)(2 \mathrm{n}-1)}\right)$

$=\sum_{\mathrm{n}=1}^{100} \tan ^{-1}(2 \mathrm{n}+1)-\tan ^{-1}(2 \mathrm{n}-1)$

$=\tan ^{-1} 201-\tan ^{-1} 1$

$=\tan ^{-1}\left(\frac{200}{202}\right)$

$\therefore \cot ^{-1}(\alpha)=\cot ^{-1}\left(\frac{202}{200}\right)$

$\alpha=1.01$

Leave a comment