Solve the Following Questions

Question:

Let $A$ be a symmetric matrix of order 2 with integer entries. If the sum of the diagonal elements of $\mathrm{A}^{2}$ is 1 , then the possible number of such matrices is

  1. 4

  2. 1

  3. 6

  4. 12


Correct Option: 1

Solution:

$A=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$

$\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{I}$

$A^{2}=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)=\left(\begin{array}{cc}a^{2}+b^{2} & b(a+c) \\ b(a+c) & b^{2}+c^{2}\end{array}\right)$

Sum of the diagonal entries of

$\mathrm{A}^{2}=\mathrm{a}^{2}+2 \mathrm{~b}^{2}+\mathrm{c}^{2}$

Given $a^{2}+2 b^{2}+c^{2}=1, a, b, c \in I$

$b=0 \& a^{2}+c^{2}=1$

Case-1 : $a=0 \Rightarrow c=\pm 1$

(2-matrices)

Case-2 : $\mathrm{c}=0 \Rightarrow \mathrm{a}=\pm 1$

(2-matrices)

Total $=4$ matrices

 

Leave a comment