Solve the Following Questions

Question:

If $\frac{\sin ^{-1} x}{a}=\frac{\cos ^{-1} x}{b}=\frac{\tan ^{-1} y}{c} ; 0

  1. $\frac{1-y^{2}}{y \sqrt{y}}$

  2. $1-y^{2}$

  3. $\frac{1-y^{2}}{1+y^{2}}$

  4. $\frac{1-y^{2}}{2 y}$


Correct Option: , 3

Solution:

$\frac{\sin ^{-1} x}{r}=a, \frac{\cos ^{-1} x}{r}=b, \frac{\tan ^{-1} y}{r}=c$

So, $a+b=\frac{\pi}{2 r}$

$\cos \left(\frac{\pi c}{a+b}\right)=\cos \left(\frac{\pi \tan ^{-1} y}{\frac{\pi}{2 r} r}\right)$

$=\cos \left(2 \tan ^{-1} y\right)$, let $\tan ^{-1} y=\theta$

$=\cos (2 \theta)$

$=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\frac{1-y^{2}}{1+y^{2}}$

Leave a comment