Solve the Following Questions

Question:

If $0<\mathrm{a}, \mathrm{b}<1$, and $\tan ^{-1} \mathrm{a}+\tan ^{-1} \mathrm{~b}=\frac{\pi}{4}$, then the value of

$(a+b)-\left(\frac{a^{2}+b^{2}}{2}\right)+\left(\frac{a^{3}+b^{3}}{3}\right)-\left(\frac{a^{4}+b^{4}}{4}\right)+\ldots$

is:

  1. $\log _{e} 2$

  2. $e^{2}-1$

  3. $\mathrm{e}$

  4. $\log _{e}\left(\frac{e}{2}\right)$


Correct Option: 1

Solution:

$\tan ^{-1} \mathrm{a}+\tan ^{-1} \mathrm{~b}=\frac{\pi}{4} \quad 0<\mathrm{a}, \mathrm{b}<1$

$\Rightarrow \frac{a+b}{1-a b}=1$

$a+b=1-a b$

$(a+1)(b+1)=2$

Now $\left[a-\frac{a^{2}}{2}+\frac{a^{3}}{3}+\ldots\right]+\left[b-\frac{b^{2}}{2}+\frac{b^{3}}{3}+\ldots\right]$

$=\log _{e}(1+a)+\log _{e}(1+b)$

$\left(\because\right.$ expansion of $\left.\log _{\mathrm{e}}(1+\mathrm{x})\right)$

$=\log _{\mathrm{e}}[(1+\mathrm{a})(1+\mathrm{b})]$

$=\log _{\mathrm{e}} 2$

Leave a comment