Find $x, y, a$ and $b$ if $\left[\begin{array}{ccc}3 x+4 y & 2 & x-2 y \\ a+b & 2 a-b & -1\end{array}\right]=\left[\begin{array}{rrr}2 & 2 & 4 \\ 5 & -5 & -1\end{array}\right]$
Since the corresponding elements of two equal matrices are equal,
$\left[\begin{array}{ccc}3 x+4 y & 2 & x-2 y \\ a+b & 2 a-b & -1\end{array}\right]=\left[\begin{array}{ccc}2 & 2 & 4 \\ 5 & -5 & -1\end{array}\right]$
$\Rightarrow 3 x+4 y=2$ ....(1)
$\Rightarrow x-2 y=4$
$\Rightarrow x=4+2 y$ .....(2)
Putting the value of $x$ in eq. $(1)$, we get
$3(4+2 y)+4 y=2$
$\Rightarrow 12+6 y+4 y=2$
$\Rightarrow 12+10 y=2$
$\Rightarrow 10 y=2-12$
$\Rightarrow 10 y=-10$
$\Rightarrow y=\frac{-10}{10}=-1$
Putting the value of $y$ in eq. (2), we get
$x=4+2(-1)$
$\Rightarrow x=4-2=2$
$a+b=5$
$\Rightarrow a=5-b$ .....(3)
$\Rightarrow 2 a-b=-5$ .....(4)
Putting the value $a$ in eq. (4), we get
$2(5-b)-b=-5$
$\Rightarrow 10-2 b-b=-5$
$\Rightarrow 10-3 b=-5$
$\Rightarrow-3 b=-15$
$\Rightarrow b=\frac{-15}{-3}$
$\Rightarrow b=5$
Putting the value of $b$ in eq. (3), we get
$a=5-5$
$\Rightarrow a=0$
$\therefore x=2, y=-1, a=0$ and $b=5$