Question:
Solve the following quadratic equations by factorization:
$x^{2}-(\sqrt{3}+1) x+\sqrt{3}=0$
Solution:
We have been given
$x^{2}-(\sqrt{3}+1) x+\sqrt{3}=0$
$x^{2}-\sqrt{3} x-x+\sqrt{3}=0$
$x(x-\sqrt{3})-1(x-\sqrt{3})=0$
$(x-1)(x-\sqrt{3})=0$
Therefore,
$x-1=0$
$x=1$
or
$x-\sqrt{3}=0$
$x=\sqrt{3}$
Hence, $x=1$ or $x=\sqrt{3}$.