Question:
Solve the following quadratic equations by factorization:
Solution:
We have been given
$\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{5}{6}$
$6\left(x^{2}+1+2 x-x^{2}-1+2 x\right)=5\left(x^{2}-1\right)$
$5 x^{2}-24 x-5=0$
$5 x^{2}-25 x+x-5=0$
$5 x(x-5)+1(x-5)=0$
$(5 x+1)(x-5)=0$
Therefore,
$5 x+1=0$
$5 x=-1$
$x=\frac{-1}{5}$
or,
$x-5=0$
$x=5$
Hence, $x=\frac{-1}{5}$ or $x=5$.