Question:
Solve the following quadratic equations by factorization:
$\frac{1}{x-1}-\frac{1}{x+5}=\frac{6}{7}, x \neq 1,-5$
Solution:
We have been given
$\frac{1}{x-1}-\frac{1}{x+5}=\frac{6}{7}$
$\frac{6}{x^{2}+4 x-5}=\frac{6}{7}$
$x^{2}+4 x-12=0$
$x^{2}+6 x-2 x-12=0$
$x(x+6)-2(x+6)=0$
$(x-2)(x+6)=0$
Therefore,
$x-2=0$
$x=2$
or,
$x+6=0$
$x=-6$
Hence, $x=2$ or $x=-6$