Question:
Solve the following quadratic equations by factorization:
$a b x^{2}+\left(b^{2}-a c\right) x-b c=0$
Solution:
We have been given
$a b x^{2}+\left(b^{2}-a c\right) x-b c=0$
$a b x^{2}+b^{2} x-a c x-b c=0$
$b x(a x+b)+-c(a x+b)=0$
$(a x+b)(b x-c)=0$
Therefore,
$a x+b=0$
$a x=-b$
$x=-\frac{b}{a}$
or,
$b x-c=0$
$b x=c$
$x=\frac{c}{b}$
Hence, $x=-\frac{b}{a}$ or $x=\frac{c}{b}$.