Question:
Solve the following quadratic equations by factorization:
$\sqrt{2} x^{2}-3 x-2 \sqrt{2}=0$
Solution:
We have been given
$\sqrt{2} x^{2}-3 x-2 \sqrt{2}=0$
$\sqrt{2} x^{2}-4 x+x-2 \sqrt{2}=0$
$\sqrt{2} x(x-2 \sqrt{2})+1(x-2 \sqrt{2})=0$
$(x-2 \sqrt{2})(\sqrt{2} x+1)=0$
Therefore,
$x-2 \sqrt{2}=0$
$x=2 \sqrt{2}$
or,
$\sqrt{2} x+1=0$
$\sqrt{2} x=-1$
$x=\frac{-1}{\sqrt{2}}$
Hence, $x=2 \sqrt{2}$ or $x=\frac{-1}{\sqrt{2}}$.