Question:
Solve the following quadratic equations by factorization:
$\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}+\frac{1}{(x-3)(x-4)}=\frac{1}{6}$
Solution:
We have been given,
$\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}+\frac{1}{(x-3)(x-4)}=\frac{1}{6}$
$\frac{(x-3)(x-4)+(x-1)(x-4)+(x-1)(x-2)}{(x-1)(x-4)(x-2)(x-3)}=\frac{1}{6}$
$\frac{3\left(x^{2}-5 x+6\right)}{\left(x^{2}-5 x+4\right)\left(x^{2}-5 x+6\right)}=\frac{1}{6}$
$18=x^{2}-5 x+4$
$x^{2}-5 x-14=0$
$x^{2}-7 x+2 x-14=0$
$x(x-7)+2(x-7)=0$
$(x+2)(x-7)=0$
Therefore,
$x+2=0$
$x=-2$
or,
$x-7=0$
$x=7$
Hence, $x=-2$ or $x=7$.