Question:
Solve the following quadratic equations by factorization:
$a x^{2}+\left(4 a^{2}-3 b\right) x-12 a b=0$
Solution:
We have been given
$a x^{2}+\left(4 a^{2}-3 b\right) x-12 a b=0$
$a x^{2}+4 a^{2} x-3 b x-12 a b=0$
$a x(x+4 a)-3 b(x+4 a)=0$
$(a x-3 b)(x+4 a)=0$
Therefore,
$a x-3 b=0$
$a x=3 b$
$x=\frac{3 b}{a}$
or
$x+4 a=0$
$x=-4 a$
Hence, $x=\frac{3 b}{a}$ or $x=-4 a$.