Question:
Solve the following quadratic equations by factorization:
$x^{2}-x-a(a+1)=0$
Solution:
We have been given
$x^{2}-x-a(a+1)=0$
$x^{2}+a x-(a+1) x-a(a+1)=0$
$x(x+a)-(a+1)(x+a)=0$
$(x-(a+1))(x+a)=0$
Therefore,
$x-(a+1)=0$
$x=(a+1)$
or,
$x+a=0$
$x=-a$
Hence, $x=a+1$ or $x=-a$.