Question:
Solve the following quadratic equations by factorization:
$(a+b)^{2} x^{2}-4 a b x-(a-b)^{2}=0$
Solution:
We have been given
$(a+b)^{2} x^{2}-4 a b x-(a-b)^{2}=0$
$(a+b)^{2} x^{2}-(a+b)^{2} x+(a-b)^{2} x-(a-b)^{2}=0$
$(a+b)^{2} x(x-1)+(a-b)^{2}(x-1)=0$
$\left((a+b)^{2} x+(a-b)^{2}\right)(x-1)=0$
Therefore,
$(a+b)^{2} x+(a-b)^{2}=0$
$(a+b)^{2} x=-(a-b)^{2}$
$x=-\left(\frac{a-b}{a+b}\right)^{2}$
or,
$x-1=0$
$x=1$
Hence, $x=-\left(\frac{a-b}{a+b}\right)^{2}$ or $x=1$.