Question:
Solve the following quadratic equations by factorization:
Solution:
We have been given
$\frac{x-3}{x+3}-\frac{x+3}{x-3}=\frac{48}{7}$
$7\left(x^{2}+9-6 x-x^{2}-9-6 x\right)=48\left(x^{2}-9\right)$
$48 x^{2}+84 x-432=0$
$4 x^{2}+7 x-36=0$
Therefore,
$4 x^{2}+16 x-9 x-36=0$
$4 x(x+4)-9(x+4)=0$
$(4 x-9)(x+4)=0$
Therefore,
$4 x-9=0$
$4 x=9$
$x=\frac{9}{4}$
or,
$x+4=0$
$x=-4$
Hence, $x=\frac{9}{4}$ or $x=-4$.