Question:
Solve the following quadratic equations by factorization:
$(x-5)(x-6)=\frac{25}{(24)^{2}}$
Solution:
We have been given that,
$(x-5)(x-6)=\frac{25}{(24)^{2}}$
$x^{2}-11 x+30-\frac{25}{576}=0$
$x^{2}-11 x+\frac{17255}{576}=0$
$x^{2}-\frac{145}{24} x-\frac{119}{24} x+\frac{17255}{576}=0$
$x\left(x-\frac{145}{24}\right)-\frac{119}{24}\left(x-\frac{145}{24}\right)=0$
$\left(x-\frac{119}{24}\right)\left(x-\frac{145}{24}\right)=0$
Therefore,
$x-\frac{119}{24}=0$
$x=\frac{119}{24}$
or,
$x-\frac{145}{24}=0$
$x=\frac{145}{24}$
Hence, $x=\frac{119}{24}=4 \frac{23}{24}$ or $x=\frac{145}{24}=6 \frac{1}{24}$.