Question:
Solve the following quadratic equations by factorization:
$\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}, x \neq 4,7$
Solution:
We have been given
$\frac{1}{x+4}-\frac{1}{x-7}=\frac{11}{30}$
$\frac{-11}{x^{2}-3 x-28}=\frac{11}{30}$
$-30=x^{2}-3 x-28$
$x^{2}-3 x+2=0$
$x^{2}-2 x-x+2=0$
$x(x-2)-1(x-2)=0$
$(x-1)(x-2)=0$
Therefore,
$x-1=0$
$x=1$
or,
$x-2=0$
$x=2$
Hence, $x=1$ or $x=2$.