Question:
Solve the following quadratic equations by factorization:
$7 x+\frac{3}{x}=35 \frac{3}{5}$
Solution:
We have been given,
$7 x+\frac{3}{x}=35 \frac{3}{5}$
$7 x^{2}+3=\left(35+\frac{3}{5}\right) x$
$7 x^{2}-\left(35+\frac{3}{5}\right) x+3=0$
Therefore,
$7 x^{2}-35 x-\frac{3}{5} x+3=0$
$7 x(x-5)-\frac{3}{5}(x-5)=0$
$\left(7 x-\frac{3}{5}\right)(x-5)=0$
Therefore,
$7 x-\frac{3}{5}=0$
$7 x=\frac{3}{5}$
$x=\frac{3}{35}$
or,
$x-5=0$
$x=5$
Hence, $x=\frac{3}{35}$ or $x=5$.