Question:
Solve the following quadratic equations by factorization:
$\frac{a}{x-a}+\frac{b}{x-b}=\frac{2 c}{x-c}$
Solution:
We have been given,
$\frac{a}{(x-a)}+\frac{b}{(x-b)}=\frac{2 c}{(x-c)}$
$a(x-b)(x-c)+b(x-a)(x-c)=2 c(x-a)(x-b)$
$a\left(x^{2}-(b+c) x+b c\right)+b\left(x^{2}-(a+c) x+a c\right)=2 c\left(x^{2}-(a+b) x+a b\right)$
$(a+b-2 c) x^{2}-(2 a b-a c-b c) x=0$
$x[(a+b-2 c) x-(2 a b-a c-b c)]=0$
Therefore,
$x=0$
or,
$(a+b-2 c) x-(2 a b-a c-b c)=0$
$(a+b-2 c) x=(2 a b-a c-b c)$
$x=\frac{(2 a b-a c-b c)}{(a+b-2 c)}$
Hence, $x=0$ or $x=\frac{(2 a b-a c-b c)}{(a+b-2 c)}$.