Question:
Solve the following quadratic equations by factorization:
$\frac{2 x}{x-4}+\frac{2 x-5}{x-3}=\frac{25}{3}$
Solution:
We have been given
$\frac{2 x}{x-4}+\frac{2 x-5}{x-3}=\frac{25}{3}$
$\frac{2 x(x-3)+(2 x-5)(x-4)}{x^{2}-7 x+12}=\frac{25}{3}$
$6 x^{2}-18 x+6 x^{2}-24 x-15 x+60=25 x^{2}-175 x+300$
$13 x^{2}-118 x+240=0$
$13 x^{2}-78 x-40 x+240=0$
$13 x(x-6)-40(x-6)=0$
$(x-6)(13 x-40)=0$
Therefore,
$x-6=0$
$x=6$
or,
$13 x-40=0$
$13 x=40$
$x=\frac{40}{13}$
Hence, $x=6$ or $x=\frac{40}{13}$.