Question:
Solve the following quadratic equations by factorization:
$3 x^{2}-14 x-5=0$
Solution:
We have been given
$3 x^{2}-14 x-5=0$
$3 x^{2}-15 x+x-5=0$
$3 x(x-5)+1(x-5)=0$
$(3 x+1)(x-5)=0$
Therefore,
$3 x+1=0$
$3 x=-1$
$x=\frac{-1}{3}$
or,
$x-5=0$
$x=5$
Hence, $x=\frac{-1}{3}$ or $x=5$.