Question:
Solve the following quadratic equations by factorization:
Solution:
We have been given
$\frac{1}{x-2}+\frac{2}{x-1}=\frac{6}{x}$
$x^{2}-x+2 x^{2}-4 x=6\left(x^{2}-x-2 x+2\right)$
$3 x^{2}-13 x+12=0$
Therefore,
$3 x^{2}-9 x-4 x+12=0$
$3 x(x-3)-4(x-3)=0$
$(3 x-4)(x-3)=0$
Therefore,
$3 x-4=0$
$3 x=4$
$x=\frac{4}{3}$
or,
$x-3=0$
$x=3$
Hence, $x=\frac{4}{3}$ or $x=3$.