Question:
Solve the following quadratic equations by factorization:
$\frac{x-a}{x-b}+\frac{x-b}{x-a}=\frac{a}{b}+\frac{b}{a}$
Solution:
We have been given
$\frac{x-a}{x-b}+\frac{x-b}{x-a}=\frac{a}{b}+\frac{b}{a}$
$\frac{x^{2}+a^{2}-2 a x+x^{2}+b^{2}-2 b x}{x^{2}-(a+b) x+a b}=\frac{a^{2}+b^{2}}{a b}$
$2 a b x^{2}-2(a b)(a+b) x+a b\left(a^{2}+b^{2}\right)=\left(a^{2}+b^{2}\right) x^{2}-(a+b)\left(a^{2}+b^{2}\right) x+a b\left(a^{2}+b^{2}\right)$
$(a-b)^{2} x^{2}-(a+b)(a-b)^{2} x=0$
$x(a-b)^{2}(x-(a+b))=0$
Therefore,
$x(a-b)^{2}=0$
$x=0$
or,
$x-(a+b)=0$
$x=a+b$
Hence, $x=0$ or $x=a+b$.