Question:
Solve the following quadratic equations by factorization:
$4 x^{2}+4 b x-\left(a^{2}-b^{2}\right)=0$
Solution:
We have been given
$4 x^{2}+4 b x-\left(a^{2}-b^{2}\right)=0$
$4 x^{2}+2(a+b) x-2(a-b) x-\left(a^{2}-b^{2}\right)=0$
$2 x(2 x+a+b)-(a-b)(2 x+a+b)=0$
$(2 x-(a-b))(2 x+a+b)=0$
Therefore,
$2 x-(a-b)=0$
$2 x=a-b$
$x=\frac{a-b}{2}$
or,
$2 x+a+b=0$
$2 x=-(a+b)$
$x=\frac{-(a+b)}{2}$
Hence, $x=\frac{a-b}{2}$ or $x=\frac{-(a+b)}{2}$.