Question:
Solve the following quadratic equations by factorization:
$\frac{x+3}{x+2}=\frac{3 x-7}{2 x-3}$
Solution:
We have been given
$\frac{x+3}{x+2}=\frac{3 x-7}{2 x-3}$
$2 x^{2}-3 x+6 x-9=3 x^{2}-7 x+6 x-14$
$x^{2}-4 x-5=0$
$x^{2}-5 x+x-5=0$
$x(x-5)+1(x-5)=0$
$(x+1)(x-5)=0$
Therefore,
$x+1=0$
$x=-1$
or,
$x-5=0$
$x=5$
Hence, $x=-1$ or $x=5$.