Question.
Solve the following pair of equations by the elimination method and the substitution method :
(i) x + y = 5 and 2x – 3y = 4
(ii) 3x + 4y = 10 and 2x – 2y = 2
(iii) 3x – 5y – 4 = 0 and 9x = 2y + 7
(iv) $\frac{\mathbf{x}}{\mathbf{z}}+\frac{\mathbf{2} \mathbf{y}}{\mathbf{3}}=-\mathbf{1}$ and $x-\frac{\mathbf{y}}{\mathbf{3}}=3$
Solve the following pair of equations by the elimination method and the substitution method :
(i) x + y = 5 and 2x – 3y = 4
(ii) 3x + 4y = 10 and 2x – 2y = 2
(iii) 3x – 5y – 4 = 0 and 9x = 2y + 7
(iv) $\frac{\mathbf{x}}{\mathbf{z}}+\frac{\mathbf{2} \mathbf{y}}{\mathbf{3}}=-\mathbf{1}$ and $x-\frac{\mathbf{y}}{\mathbf{3}}=3$
Solution:
(i) Solution By Elimination Method:
x + y = 5 ...(i)
2x – 3y = 4 ...(ii)
Multiplying (i) by 3 and (ii) by 1 and adding we get 3(x + y) + 1 (2x – 3y) = 3 × 5 + 1 × 4
$\Rightarrow 3 x+3 y+2 x-3 y=19$
$\Rightarrow 5 x=19 \Rightarrow x=\frac{19}{5}$
From (i), substituting $x=\frac{19}{5}$, we get
$\frac{\mathbf{1 9}}{\mathbf{5}}+\mathrm{y}=5 \Rightarrow \mathrm{y}=5-\frac{\mathbf{1 9}}{\mathbf{5}} \Rightarrow \mathrm{y}=\frac{\mathbf{6}}{\mathbf{5}}$
Hence, $x=\frac{19}{5}, y=\frac{6}{5}$
(i) Solution By Substitution Method :
x + y = 5 ...(i)
2x – 3y = 4 ...(ii)
From (i), y = 5 – x ...(iii)
Substituting y from (iii) in (ii), 2x – 3(5 – x) =4
$\Rightarrow 2 x-15+3 x=4$
$\Rightarrow 5 x=19 \Rightarrow x=\frac{19}{5}$
Then from (iii), $y=5-\frac{19}{5} \Rightarrow y=\frac{6}{5}$
Hence, $x=\frac{19}{5}, y=\frac{6}{5}$
(ii) Solution by elimination method
3x + 4y = 10 ...(i)
2x – 2y = 2 ...(ii)
multiplying (ii) equation by 2, we get
4x – 4y = 4 ...(iii)
Add equation (i) and (iii), we get
7x = 14
$\Rightarrow x=2$
Substituting, x = 2 in (i), we get
3 × 2 + 4 × y = 10
$\Rightarrow 4 y=4$
$\Rightarrow y=1$
Hence, x = 2, y = 1
(ii) Solution by substitution method
3x + 4y = 10 ...(i)
2x – 2y = 2 ...(ii)
From (ii), $y=\frac{2 x-2}{2}=x-1$...(iii)
Substituting, y = x – 1 in (i), we get
3x + 4 (x – 1) = 10
$\Rightarrow 3 x+4 x-4=10$
$\Rightarrow 7 x=14$
x = 2
Then from (iii)
y = 2 – 1 = 1
Hence, x = 2, y = 1
(iii) Solution by elimation method
3x – 5y = 4 ...(i)
9x = 2y + 7 ...(ii)
Multiplying (i) equation by 3, we get
9x – 15y = 12 ...(iii)
Subtracting (iii) from (ii), we get
9x – 9x + 15y = 2y + 7 – 12
$\Rightarrow 15 y-2 y=7-12$
13y = – 5
$y=\frac{-5}{13}$
From (i) substituting value of $y=\frac{-\mathbf{5}}{\mathbf{1 3}}$
$3 x=5 \times\left(\frac{-5}{13}\right)+4$
$\Rightarrow 3 x=\frac{-25}{13}+7$
$\Rightarrow 3 x=\frac{-25+52}{13}$
$3 x=\frac{27}{13}$
$x=\frac{9}{13}$
Hence, $y=\frac{-5}{13}, x=\frac{9}{13}$
(iii) Solution by substitution method
3x – 5y = 4 ...(i)
9x = 2y + 7 ...(ii)
From (i)
$\mathrm{x}=\frac{4+5 \mathrm{y}}{3}$ ...(iii)
Substuting $x=\frac{\mathbf{4}+\mathbf{5} \mathbf{y}}{\mathbf{3}}$ in (ii)
$9 \times \frac{4+5 y}{3}=2 y+7$
12 + 15y = 2y + 7
$y=\frac{-5}{13}$
from (iii)
$x=\frac{4+5\left(\frac{-5}{13}\right)}{3}=\frac{27}{39}$
Hence, $y=\frac{-5}{13}, x=\frac{9}{13}$
(iv) Solution by elimination method
$\frac{x}{2}+\frac{2 y}{3}=-1$ ...(i)
$x-\frac{y}{3}=3$ ...(ii)
Multiplying (ii), we get
$2 x-\frac{2 y}{3}=6$ ...(iii)
Adding (i) and (iii), we get
$2 x+\frac{x}{z}=-1+6$
$\Rightarrow \frac{5 x}{2}=5$
$\Rightarrow x=2$
From (ii) substituting x = 2, in equation (ii), we get
$\Rightarrow 2-\frac{\mathbf{y}}{\mathbf{3}}=3$
$\Rightarrow-1=\frac{\mathbf{y}}{\mathbf{3}}$
$\Rightarrow y=-3$
Hence, x = 2, y = – 3
(iv) Solution by substitution method
$\frac{x}{2}+\frac{2 y}{3}=-1$ ...(i)
$x-\frac{y}{3}=3$ ...(ii)
from (ii), $x=3+\frac{y}{3}$ ...(iii)
Substituting x from (iii) in (i), we get
$\frac{3+\frac{y}{3}}{2}+\frac{2 y}{3}=-1$
$\Rightarrow \frac{3}{2}+\frac{y}{6}+\frac{2 y}{3}=-1$
$\Rightarrow \frac{\mathbf{y}+\mathbf{4} \mathbf{y}}{\mathbf{6}}=-1-\frac{\mathbf{3}}{\mathbf{2}}$
$\Rightarrow \frac{5 \mathbf{y}}{6}=\frac{-5}{2}$
$\Rightarrow y=-3$
Substituting y = – 3 in equation (ii), we get
$\Rightarrow x-\frac{(-3)}{3}=3$
$\Rightarrow x+1=3$
$\Rightarrow x=2$
Hence, x = 2, y = – 3
(i) Solution By Elimination Method:
x + y = 5 ...(i)
2x – 3y = 4 ...(ii)
Multiplying (i) by 3 and (ii) by 1 and adding we get 3(x + y) + 1 (2x – 3y) = 3 × 5 + 1 × 4
$\Rightarrow 3 x+3 y+2 x-3 y=19$
$\Rightarrow 5 x=19 \Rightarrow x=\frac{19}{5}$
From (i), substituting $x=\frac{19}{5}$, we get
$\frac{\mathbf{1 9}}{\mathbf{5}}+\mathrm{y}=5 \Rightarrow \mathrm{y}=5-\frac{\mathbf{1 9}}{\mathbf{5}} \Rightarrow \mathrm{y}=\frac{\mathbf{6}}{\mathbf{5}}$
Hence, $x=\frac{19}{5}, y=\frac{6}{5}$
(i) Solution By Substitution Method :
x + y = 5 ...(i)
2x – 3y = 4 ...(ii)
From (i), y = 5 – x ...(iii)
Substituting y from (iii) in (ii), 2x – 3(5 – x) =4
$\Rightarrow 2 x-15+3 x=4$
$\Rightarrow 5 x=19 \Rightarrow x=\frac{19}{5}$
Then from (iii), $y=5-\frac{19}{5} \Rightarrow y=\frac{6}{5}$
Hence, $x=\frac{19}{5}, y=\frac{6}{5}$
(ii) Solution by elimination method
3x + 4y = 10 ...(i)
2x – 2y = 2 ...(ii)
multiplying (ii) equation by 2, we get
4x – 4y = 4 ...(iii)
Add equation (i) and (iii), we get
7x = 14
$\Rightarrow x=2$
Substituting, x = 2 in (i), we get
3 × 2 + 4 × y = 10
$\Rightarrow 4 y=4$
$\Rightarrow y=1$
Hence, x = 2, y = 1
(ii) Solution by substitution method
3x + 4y = 10 ...(i)
2x – 2y = 2 ...(ii)
From (ii), $y=\frac{2 x-2}{2}=x-1$...(iii)
Substituting, y = x – 1 in (i), we get
3x + 4 (x – 1) = 10
$\Rightarrow 3 x+4 x-4=10$
$\Rightarrow 7 x=14$
x = 2
Then from (iii)
y = 2 – 1 = 1
Hence, x = 2, y = 1
(iii) Solution by elimation method
3x – 5y = 4 ...(i)
9x = 2y + 7 ...(ii)
Multiplying (i) equation by 3, we get
9x – 15y = 12 ...(iii)
Subtracting (iii) from (ii), we get
9x – 9x + 15y = 2y + 7 – 12
$\Rightarrow 15 y-2 y=7-12$
13y = – 5
$y=\frac{-5}{13}$
From (i) substituting value of $y=\frac{-\mathbf{5}}{\mathbf{1 3}}$
$3 x=5 \times\left(\frac{-5}{13}\right)+4$
$\Rightarrow 3 x=\frac{-25}{13}+7$
$\Rightarrow 3 x=\frac{-25+52}{13}$
$3 x=\frac{27}{13}$
$x=\frac{9}{13}$
Hence, $y=\frac{-5}{13}, x=\frac{9}{13}$
(iii) Solution by substitution method
3x – 5y = 4 ...(i)
9x = 2y + 7 ...(ii)
From (i)
$\mathrm{x}=\frac{4+5 \mathrm{y}}{3}$ ...(iii)
Substuting $x=\frac{\mathbf{4}+\mathbf{5} \mathbf{y}}{\mathbf{3}}$ in (ii)
$9 \times \frac{4+5 y}{3}=2 y+7$
12 + 15y = 2y + 7
$y=\frac{-5}{13}$
from (iii)
$x=\frac{4+5\left(\frac{-5}{13}\right)}{3}=\frac{27}{39}$
Hence, $y=\frac{-5}{13}, x=\frac{9}{13}$
(iv) Solution by elimination method
$\frac{x}{2}+\frac{2 y}{3}=-1$ ...(i)
$x-\frac{y}{3}=3$ ...(ii)
Multiplying (ii), we get
$2 x-\frac{2 y}{3}=6$ ...(iii)
Adding (i) and (iii), we get
$2 x+\frac{x}{z}=-1+6$
$\Rightarrow \frac{5 x}{2}=5$
$\Rightarrow x=2$
From (ii) substituting x = 2, in equation (ii), we get
$\Rightarrow 2-\frac{\mathbf{y}}{\mathbf{3}}=3$
$\Rightarrow-1=\frac{\mathbf{y}}{\mathbf{3}}$
$\Rightarrow y=-3$
Hence, x = 2, y = – 3
(iv) Solution by substitution method
$\frac{x}{2}+\frac{2 y}{3}=-1$ ...(i)
$x-\frac{y}{3}=3$ ...(ii)
from (ii), $x=3+\frac{y}{3}$ ...(iii)
Substituting x from (iii) in (i), we get
$\frac{3+\frac{y}{3}}{2}+\frac{2 y}{3}=-1$
$\Rightarrow \frac{3}{2}+\frac{y}{6}+\frac{2 y}{3}=-1$
$\Rightarrow \frac{\mathbf{y}+\mathbf{4} \mathbf{y}}{\mathbf{6}}=-1-\frac{\mathbf{3}}{\mathbf{2}}$
$\Rightarrow \frac{5 \mathbf{y}}{6}=\frac{-5}{2}$
$\Rightarrow y=-3$
Substituting y = – 3 in equation (ii), we get
$\Rightarrow x-\frac{(-3)}{3}=3$
$\Rightarrow x+1=3$
$\Rightarrow x=2$
Hence, x = 2, y = – 3