Question:
Solve the following equations for x:
(i) $2^{2 x}-2^{x+3}+2^{4}=0$
(ii) $3^{2 x+4}+1=2 \times 3^{x+2}$
Solution:
(i) We have, $\Rightarrow 2^{2 x}-2^{x+3}+2^{4}=0$
$\Rightarrow 2^{2 x}+2^{4}=2^{x} \cdot 2^{3}$
$\Rightarrow$ Let $2^{x}=y$
$\Rightarrow y^{2}+2^{4}=y \times 2^{3}$
$\Rightarrow y^{2}-8 y+16=0$
$\Rightarrow y^{2}-4 y-4 y+16=0$
$\Rightarrow y(y-4)-4(y-4)=0$
$\Rightarrow y=4$
$\Rightarrow x^{2}=2^{2}$
$\Rightarrow x=2$
(ii) We have,
$3^{2 x+4}+1=2 \times 3^{x+2}$
$\left(3^{x+2}\right)^{2}+1=2 \times 3^{x+2}$
Let $3^{x+2}=y$
$y^{2}+1=2 y$
$y^{2}-2 y+1=0$
$y^{2}-y-y+1=0$
$y(y-1)-1(y-1)=0$
$(y-1)(y-1)=0$
$y=1$