Solve the following equations for x:
(i) $\tan ^{-1} \frac{1}{4}+2 \tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{6}+\tan ^{-1} \frac{1}{x}=\frac{\pi}{4}$
(ii) $3 \sin ^{-1} \frac{2 x}{1+x^{2}}-4 \cos ^{-1} \frac{1-x^{2}}{1+x^{2}}+2 \tan ^{-1} \frac{2 x}{1-x^{2}}=\frac{\pi}{3}$
(iii) $\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)=\frac{2 \pi}{3}, x>0$
(iv) $2 \tan ^{-1}(\sin x)=\tan ^{-1}(2 \sin x), x \neq \frac{\pi}{2}$.
(v) $\cos ^{-1}\left(\frac{x^{2}-1}{x^{2}+1}\right)+\frac{1}{2} \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{2 \pi}{3}$
(vi) $\tan ^{-1}\left(\frac{x-2}{x-1}\right)+\tan ^{-1}\left(\frac{x+2}{x+1}\right)=\frac{\pi}{4}$
(i) We know
$\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
$\therefore \tan ^{-1} \frac{1}{4}+2 \tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{6}+\tan ^{-1} \frac{1}{x}=\frac{\pi}{4}$
$\Rightarrow \tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{6}+\tan ^{-1} \frac{1}{x}=\frac{\pi}{4}$
$\Rightarrow \tan ^{-1}\left(\frac{\frac{1}{4}+\frac{1}{5}}{1-\frac{1}{4} \times \frac{1}{5}}\right)+\tan ^{-1}\left(\frac{\frac{1}{5}+\frac{1}{6}}{1-\frac{1}{5} \times \frac{1}{6}}\right)+\tan ^{-1} \frac{1}{x}=\frac{\pi}{4}$
$\Rightarrow \tan ^{-1}\left(\frac{\frac{9}{20}}{\frac{19}{20}}\right)+\tan ^{-1}\left(\frac{\frac{11}{30}}{\frac{29}{30}}\right)+\tan ^{-1} \frac{1}{x}=\frac{\pi}{4}$
$\Rightarrow \tan ^{-1}\left(\frac{9}{19}\right)+\tan ^{-1}\left(\frac{11}{29}\right)+\tan ^{-1} \frac{1}{x}=\frac{\pi}{4}$
$\Rightarrow \tan ^{-1}\left(\frac{\frac{9}{19}+\frac{11}{29}}{1-\frac{11}{29} \times \frac{9}{19}}\right)+\tan ^{-1} \frac{1}{x}=\frac{\pi}{4}$
$\Rightarrow \tan ^{-1}\left(\frac{235}{226}\right)+\tan ^{-1} \frac{1}{x}=\frac{\pi}{4}$
$\Rightarrow \tan ^{-1}\left(\frac{\frac{235}{226}+\frac{1}{x}}{1-\frac{235}{226} \times \frac{1}{x}}\right)=\frac{\pi}{4}$
$\Rightarrow \frac{235 x+226}{226 x-235}=\tan \frac{\pi}{4}$
$\Rightarrow \frac{235 x+226}{226 x-235}=1$
$\Rightarrow 235 x+226=226 x-235$
$\Rightarrow 9 x=-461$
$\Rightarrow x=-\frac{461}{9}$
(ii)
$3 \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)-4 \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)+2 \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{\pi}{3}$
$\Rightarrow 6 \tan ^{-1} x-8 \tan ^{-1} x+4 \tan ^{-1} x=\frac{\pi}{3}$ $\left[\because 2 \tan ^{-1} x=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right), 2 \tan ^{-1} x=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\right.$ and $\left.2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)\right]$
$\Rightarrow 2 \tan ^{-1} x=\frac{\pi}{3}$
$\Rightarrow \tan ^{-1} x=\frac{\pi}{6}$
$\Rightarrow x=\tan \frac{\pi}{6}$
$\Rightarrow x=\frac{1}{\sqrt{3}}$
(iii) We know
$\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
$\therefore \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\cot ^{-1}\left(\frac{1-x^{2}}{2 x}\right)=\frac{2 \pi}{3}$
$\Rightarrow \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{2 \pi}{3} \quad\left[\because \cot ^{-1} x=\tan ^{-1} \frac{1}{x}\right]$
$\Rightarrow \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{\pi}{3}$
$\Rightarrow 2 \tan ^{-1} x=\frac{\pi}{3}$ $\left[\because 2 \tan ^{-1} x \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)\right]$
$\Rightarrow \tan ^{-1} x=\frac{\pi}{6}$
$\Rightarrow x=\tan \frac{\pi}{6}$
$\Rightarrow x=\frac{1}{\sqrt{3}}$
(iv) $2 \tan ^{-1}(\sin x)=\tan ^{-1}(2 \sin x), x \neq \frac{\pi}{2}$
$\Rightarrow \tan ^{-1}\left(\frac{2 \sin x}{1-\sin ^{2} x}\right)=\tan ^{-1}(2 \sin x)$ $\left[\because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)\right]$
$\Rightarrow \frac{2 \sin x}{1-\sin ^{2} x}=2 \sin x$
$\Rightarrow 2 \sin x=2 \sin x-2 \sin ^{3} x$
$\Rightarrow 2 \sin ^{3} x=0$
$\Rightarrow \sin x=0$
$\Rightarrow x=0$
(v) $\cos ^{-1}\left(\frac{x^{2}-1}{x^{2}+1}\right)+\frac{1}{2} \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{2 \pi}{3}$
$\Rightarrow \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)+\frac{1}{2} \times 2 \tan ^{-1} x=\frac{2 \pi}{3}$ $\left[\because \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=2 \tan ^{-1} x\right]$
$\Rightarrow 2 \tan ^{-1} x+\tan ^{-1} x=\frac{2 \pi}{3}$ $\left[\because \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=2 \tan ^{-1} x\right]$
$\Rightarrow 3 \tan ^{-1} x=\frac{2 \pi}{3}$
$\Rightarrow \tan ^{-1} x=\frac{2 \pi}{9}$
$\Rightarrow x=\tan \left(\frac{2 \pi}{9}\right)$
(vi)
$\tan ^{-1}\left(\frac{x-2}{x-1}\right)+\tan ^{-1}\left(\frac{x+2}{x+1}\right)=\frac{\pi}{4}$
$\Rightarrow \tan ^{-1}\left(\frac{x-2}{x-1}\right)+\tan ^{-1}\left(\frac{x+2}{x+1}\right)=\tan ^{-1} 1$
$\Rightarrow \tan ^{-1}\left(\frac{x-2}{x-1}\right)=\tan ^{-1} 1-\tan ^{-1}\left(\frac{x+2}{x+1}\right)$
$\Rightarrow \tan ^{-1}\left(\frac{x-2}{x-1}\right)=\tan ^{-1}\left(\frac{1-\frac{x+2}{x+1}}{1+\frac{x+2}{x+1}}\right)$
$\Rightarrow \tan ^{-1}\left(\frac{x-2}{x-1}\right)=\tan ^{-1}\left(\frac{x+1-x-2}{x+1+x+2}\right)$
$\Rightarrow \tan ^{-1}\left(\frac{x-2}{x-1}\right)=\tan ^{-1}\left(\frac{-1}{2 x+3}\right)$
$\Rightarrow \frac{x-2}{x-1}=\frac{-1}{2 x+3}$
$\Rightarrow 2 x^{2}+3 x-4 x-6=-x+1$
$\Rightarrow 2 x^{2}=1+6$
$\Rightarrow x^{2}=7$
$\Rightarrow x=\pm \sqrt{\frac{7}{2}}$