Question:
If $A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]$, write $A^{-1}$ in terms of $A$
Solution:
$|A|=\left|\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right|=-19 \neq 0$
$A$ is a non-singular matri $x$. Therefore, it is invertible.
Let $C_{i j}$ be a cofactor of $a_{i j}$ in $A$.
The cofactors of element $A$ are given by
$C_{11}=-2$
$C_{12}=-5$
$C_{21}=-3$
$C_{22}=2$
$\operatorname{adj} A=\left[\begin{array}{cc}-2 & -5 \\ -3 & 2\end{array}\right]^{T}=\left[\begin{array}{cc}-2 & -3 \\ -5 & 2\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|}$ adj $A=\left[\begin{array}{cc}2 / 19 & 3 / 19 \\ 5 / 19 & -2 / 19\end{array}\right]$
$\Rightarrow A^{-1}=\frac{1}{19} A$