Solve the following equations:

Question:

If $\quad f(x)=\int \frac{5 x^{8}+7 x^{6}}{\left(x^{2}+1+2 x^{7}\right)^{2}} d x,(x \geq 0)$

and

$f(0)=0$, then the value of $f(1)$ is :

  1. $-\frac{1}{2}$

  2. $\frac{1}{2}$

  3. $-\frac{1}{4}$

  4. $\frac{1}{4}$


Correct Option: , 4

Solution:

$\int \frac{5 x^{8}+7 x^{6}}{\left(x^{2}+1+2 x^{7}\right)^{2}} d x$

$=\int \frac{5 x^{-6}+7 x^{-8}}{\left(\frac{1}{x^{7}}+\frac{1}{x^{5}}+2\right)^{2}} d x=\frac{1}{2+\frac{1}{x^{5}}+\frac{1}{x^{7}}}+C$

As $f(0)=0, f(x)=\frac{x^{7}}{2 x^{7}+x^{2}+1}$

$f(1)=\frac{1}{4}$

Leave a comment