Solve the following equations

Question:

If $A=\left[\begin{array}{cc}\alpha & 2 \\ 2 & \alpha\end{array}\right]$ and $\left|A^{3}\right|=125$, then $\alpha=$

Solution:

Given:

$A=\left[\begin{array}{ll}\alpha & 2 \\ 2 & \alpha\end{array}\right]$

$\left|A^{3}\right|=125$

Now,

$\left|A^{3}\right|=125$

$\Rightarrow|A|^{3}=5^{3}$           $\left(\because\left|A^{n}\right|=|A|^{n}\right)$

$\Rightarrow|A|=5$

$\Rightarrow\left|\begin{array}{ll}\alpha & 2 \\ 2 & \alpha\end{array}\right|=5$

$\Rightarrow \alpha^{2}-4=5$

$\Rightarrow \alpha^{2}=5+4$

$\Rightarrow \alpha^{2}=9$

$\Rightarrow \alpha=\pm 3$

Hence, $\alpha=\pm \underline{3}$.

Leave a comment