Question:
Solve the following equation and verify your answer:
$\frac{x+2}{x+5}=\frac{x}{x+6}$
Solution:
$\frac{x+2}{x+5}=\frac{x}{x+6}$
or $\mathrm{x}^{2}+2 \mathrm{x}+6 \mathrm{x}+12=\mathrm{x}^{2}+5 \mathrm{x}$ [After $c$ ross multiplication]
or $\mathrm{x}^{2}-\mathrm{x}^{2}+8 \mathrm{x}-5 \mathrm{x}=-12$
or $3 \mathrm{x}=-12$
or $\mathrm{x}=\frac{-12}{3}$
or $\mathrm{x}=-4$
Thus, $x=-4$ is the solution of given equation. Check :
Substituting $\mathrm{x}=-4$ in the given equation, we get :
L. H. S. $=\frac{-4+2}{-4+5}=-2$
R.H.S. $=\frac{-4}{-4+6}=-2$
$\therefore$ L.H.S. $=$ R.H.S. for $x=-4$.