Question:
Solve the following equation and verify your answer:
$\frac{(2 x+3)-(5 x-7)}{6 x+11}=-\frac{8}{3}$
Solution:
$\frac{(2 x+3)-(5 x-7)}{6 x+11}=\frac{-8}{3}$
or $\frac{-3 x+10}{6 x+11}=\frac{-8}{3}$
or $-9 \mathrm{x}+30=-48 \mathrm{x}-88[$ After c ross multipl ication $]$
or $-9 \mathrm{x}+48 \mathrm{x}=-88-30$
or $39 \mathrm{x}=-118$ or $\mathrm{x}=\frac{-118}{39}$
Thus, $\mathrm{x}=\frac{-118}{39}$ is the solution of the given equation. Check:
Substituting $\mathrm{x}=\frac{-118}{39}$ in the given equation, we get :
L.H.S. $=\frac{-3\left(\frac{-118}{39}\right)+10}{6\left(\frac{-118}{39}\right)+11}=\frac{354+390}{-708+429}=\frac{744}{-279}=\frac{-8}{-3}$
R.H.S. $=\frac{-8}{3}$
$\therefore$ L.H.S. $=$ R.H. S. for $\mathrm{x}=\frac{-118}{39}$