Question:
Solve the following equation and verify your answer:
$\frac{2 x-(7-5 x)}{9 x-(3+4 x)}=\frac{7}{6}$
Solution:
$\frac{2 x-(7-5 x)}{9 x-(3+4 x)}=\frac{7}{6}$
or $\frac{7 x-7}{5 x-3}=\frac{7}{6}$
or $42 \mathrm{x}-42=35 \mathrm{x}-21$ [After c ross multiplication]
or $42 \mathrm{x}-35 \mathrm{x}=-21+42$
or $7 \mathrm{x}=21$
or $\mathrm{x}=\frac{21}{7}$
or $\mathrm{x}=3$
Thus, $\mathrm{x}=3$ is the solution of the given equation.
Check:
Substituting $x=3$ in the given equation, we get :
L. H.S. $=\frac{2 \times 3-(7-5 \times 3)}{9 \times 3-(3+4 \times 3)}=\frac{6-(7-15)}{27-(3+12)}=\frac{6+8}{27-15}=\frac{14}{12}=\frac{7}{6}$
R.H.S. $=\frac{7}{6}$
$\therefore$ L.H.S. $=$ R.H.S. for $\mathrm{x}=3$.