Question:
Solve the following equation and verify your answer:
$\frac{2 x}{3 x+1}=-3$
Solution:
$\frac{2 x}{3 x+1}=-3$
or $2 \mathrm{x}=-9 \mathrm{x}-3$ [ After c ross multipl ication ]
or $2 \mathrm{x}+9 \mathrm{x}=-3$
or $11 \mathrm{x}=-3$
or $\mathrm{x}=\frac{-3}{11}$
Thus, $\mathrm{x}=\frac{-3}{11}$ is the solution of the given equation. Check :
Substituting $\mathrm{x}=\frac{-3}{11}$ in the given equation, we get:
L.H.S. $=\frac{2\left(\frac{-3}{11}\right)}{3\left(\frac{-3}{11}\right)+1}=\frac{-6}{-9+11}=\frac{-6}{2}=-3$
R. H. S. $=-3$
$\therefore$ L.H.S. $=$ R.H. S. for $\mathrm{x}=\frac{-3}{11}$